

KLIC-DD

Interface KNX – Unité de A/C Gamme Résidentielle

ZN1CL-KLIC-DD

Version du programme d'application: [1.5] édition du manuel: [1.5]_c

www.zennio.fr

SOMMAIRE

Somm	aire	re	2			
Actual	Actualisations du document3					
1 Ir	ntro	duction5				
1.1		KLIC-DD jError! Marcador	no definido.			
1.2		Installation jError! Marcador	no definido.			
2 C	onf	nfiguration	7			
2.1		Contrôle basique	7			
2.2		Fonctionnalités avancées	7			
3 P	ara	amétrage ETS	10			
3.1		Configuration par défaut	10			
3.2		Écran général	12			
3	.2.1	1 Modèle du dispositif	12			
3	.2.2	2 Scènes	12			
3	.2.3	3 Limitation de températures	14			
3	.2.4	.4 Extinction automatique	15			
3	.2.5	5 Gestion des erreurs	16			
3	.2.6	.6 Configuration initiale	16			
3	.2.7	.7 Gestion avancée du climat				
3	.2.8	8 Fonctions logiques	21			
3.3		Écran mode	22			
3.4		Écran ventilation	23			
ANNE	XE I	I. Objets de comunication	25			
ANNEX	XE I	II. Correspondance avec les codes d'erreur des machines A/A				

ACTUALISATIONS DU DOCUMENT

Version	Modifications	Page(s)
[1.5]_c	Corrections mineures de texte	-
[1 5] b	Extension d'explication de la Gestion avancée du climat.	-
[1.3]_0	Corrections mineures de texte.	-

1 INTRODUCTION

1.1 KLIC-DD

L'interface Zennio **KLIC-DD** permet la comunication **bidirectionnelle** entre un système de contrôle domotique KNX et Unités d'air conditionné de gamme domestique.

Grâce à cette bidirectionnalité, l'unité de A/C peut-être contrôlée de la même manière qui si s'utilise n'importe quelle télécommande infra-rouge et à la fois, l'état réel de la machine se vérifie et s'envoi sur le bus KNX pour sa visualisation.

KLIC-DD combine sur un même dispositif les caractéristiques suivantes:

- Communication bidirectionnelle avec unités de air conditionné à travers du port S21.
- Contrôle sur les principales fonctionnalités de l'unité de A/C: ON/OFF, Température, Mode, Vent, Lamelles.
- Contrôle et identification des erreurs (celles de l'unité de A/C et celles qui pourraient se produire pendant la communication).
- Indicateur LED qui apporte une information sur le flux du traffic bidirectionnel (voir chapitre 1.2).
- Module de 5 fonctions logiques multi-opération.

Figure 1. Interface KLIC-DD

1.2 INSTALLATION

Le dispositif se connecte au bus KNX au moyen des bornes de connections incorporées (1).

D'un autre côté, le KLIC-DD se connecte sur la plaque PCB du climatiseur grâce à un câble de 5 fils avec connecteur S21, inclus comme accessoire dans l'emballage original du dispositif.(4)

Lorsque le dispositif est alimenté par la tension du bus, il sera possible de télécharger l'adresse physique et le programme d'application correspondant.

La ¡Error! No se encuentra el origen de la referencia. montre le schéma des éléments du KLIC-DD.

2.- Indicateur LED 3-Bouton de programmation 4.- Câble de communication S21

Voici une description de ces éléments:

- Bouton de programmation (3): Un appui court sur ce bouton place le dispositif en mode de programmation, et la LED associée (2) s'allume en rouge. si ce bouton est maintenu appuyé lors de la connexion du bus, le dispositif passera en mode sûr.
- Indicateur LED (2): Signal lumineux qui indique l'état de fonctionnement du KLIC-DD. En plus de s'allumer en rouge quand le dispositif se trouve en mode de programmation, cette LED s'allumera en bleu et en vert, indiquant l'état de la communication entre le BUS KNX et le climatiseur, très utile pendant l'installation du dispositif. À continuation se détaillent les différents modes d'illumination de l'indicateur LED:
 - > Rouge fixe: KLIC-DD est en mode de programmation.
 - Rouge clignotant: KLIC-DD est en mode sûr (clignote en rouge chaque 0.5 secondes).
 - Vert clignotant: indique une transmission ou un flux de données de la machine vers le KLIC-DD.
 - Bleu clignotant: indique une transmission ou un flux de données du KLIC-DD vers la machine.
- Câble de communication: Câble de 5 fils pour la connexion du KLIC-DD sur la plaque PCB de l'unité intérieure (S21) du climatiseur.

Pour plus d'informations sur les caractéristiques techniques du dispositif, ainsi que sur les instructions de sécurité et sur son installation, veuillez consulter le **document technique** inclus dans l'emballage original du dispositif, également disponible sur la page web de Zennio <u>http://www.zennio.fr</u>.

Il est également recommandé de consulter la **Note d'installation** du KLIC-DD, disponible sur la même adresse web.

2 CONFIGURATION

2.1 CONTRÔLE BASIQUE

Le KLIC-DD permet de superviser et contrôler l'unité intérieure de la même manière que depuis sa télécommande.

Au travers du bus KNX, il est possible d'envoyer au KLIC-DD des ordres pour contrôler les fonctions de base de l'air conditionné suivantes:

- Allumage/Extinction.
- Température de consigne.
- Mode de fonctionnement: Automatique, Chaud, Froid, Ventilation et Sec
- Vitesse de ventilation: configuration de 3 ou 5 niveaux de vitesse (consultez niveaux disponibles sur l'unité intérieure utilisée).
- Lamelles: En mouvement ou arrêtées.

Ces fonctions ont un retour d'état de la machine associé, qui est envoyé périodiquement au KLIC-DD. Lorsque le dispositif reçoit un état différent de l'antérieur, il met à jour l'état de l'objet correspondant sur le bus KNX.

2.2 FONCTIONNALITÉS AVANCÉES

En plus du contrôle basique de l'unité intérieure d'air conditionné, le KLIC-DD offre d'autres fonctions avancées qui lui donne une valeur ajoutée par rapport à la télécommande câblée: Ces fonctions sont les suivantes:

 Configuration de Scènes: permet de configurer une série de paramètres basiques et son envoi synchronisé à l'unité de A/C, de manière qu'il se génère une ambiance de climat déterminé dans la pièce. KLIC-DD permet de configurer jusqu'à 4 possibles scènes différentes.

- Limitation de températures: Les climatiseurs ont une limitation de température de consigne prédéfinie par défaut pour chacun des modes de fonctionnement disponibles. défaut pour chacun des modes de fonctionnement disponibles. Le KLIC-DD permet de configurer d'autres intervalles de température personnalisés pour chacun des modes, de manière que la température soit toujours maintenue dans cette intervalle. Si un ordre de température est reçu depuis le bus KNX, avec une valeur qui se trouve hors des limites configurées, la valeur de température qui sera envoyée à la machine sera la valeur limite la plus proche.
- Extinction automatique: permet d'éteindre la machine temporairement, après un retard établi par paramètre, lorsqu'un changement d'état se produit sur l'objet de communication associé. De plus, il possède une option nommée "Activer Flexibilité" qui permet, si elle est activée, de réactiver la machine même si elle se trouve dans un état d'extinction temporaire.

Un cas d'application de cette fonctionnalité pourrait être l'utilisation d'un capteur de fenêtre qui, associé à l'extinction automatique du KLIC-DD, permette d'éteindre la machine si la fenêtre est ouverte.

Gestion des erreurs: Cette option permet d'envoyer sur le BUS des messages indiquant l'apparition d'erreurs, que ce soient des erreurs internes de la communication entre le KLIC-DD et le climatiseur ou des erreurs externes propres au climatiseur.

En plus de l'envoi de l'objet d'erreur, il est possible de configurer l'envoi du type d'erreur. S'il s'agit d'erreurs internes, le code numérique associé au type d'erreur est indiqué dans le Tableau 1.

Quant au code numérique associé au type d'erreurs externes, il faudra consulter le manuel spécifique de la machine de climatisation installée.

Numéro de l'Erreur	Type d'erreur interne
1	Problèmes dans la réception de données (Vitesse de réception, parité, etc.)
2	Temps d'attente de la communication dépassé (Time Out)
3	Checksum incorrect

Réponse incorrecte de la machine

Tableau 1. Types d'erreurs Internes

4

Configuration initiale: cette fonction permet de définir une valeur initiale des états de l'unité d'A/C après un téléchargement, une réinitialisation depuis ETS ou après une coupure d'alimentation du bus. Les états qui peuvent être configurés sont: allumé/éteint, température, mode, vitesse de ventilation et mouvement des lamelles de la machine.

Cette configuration initiale peut s'envoyer autant sur le bus KNX comme à l'unité d'air conditionné.

Gestion avancée de climat: Cette fonctionnalité permet de modifier la température de consigne envoyée au climatiseur en fonction de la température réelle de la pièce à climatiser, mesuré par un capteur de température externe (comme peut-être celui qui incorpore l'écran tactile InZennio Z38i). La gestion avancée du climat est utile lorsque la température mesurée par le capteur externe et la mesurée par l'unité de A/C est différente L'utilisateur a comme référence celle mesurée du capteur externe et, en occasion, on peut observer que l'on arrive pas à la consigne.

Il s'agit d'une analyse périodique de la différence entre la température réelle et la température de consigne. Si le KLIC-DD détecte qu'il existe une différence entre les deux de plus de 1°C, il réajustera la valeur de température de consigne de la machine en ajoutant la différence avec la température réelle. Le KLIC-DD conservera en mémoire ces possibles déviations, pour pouvoir la ré-appliquer après un reset, changement de mode, etc.

 Fonctions logiques: sur le KLIC-DD pourront s'habiliter et configurer jusqu'à 5 fonctions logiques différentes. Consulter le chapitre 3.2.8 de ce manuel pour plus d'information.

3 PARAMÉTRAGE ETS

Pour commencer avec le paramétrage du dispositif, il est nécessaire, une fois ouvert le programme ETS, d'importer la base de données du produit (version 1.5 du programme d'application).

Ensuite, il faut ajouter le dispositif au projet correspondant. Le processus de configuration s'initialise en accédant à l'onglet de paramètres du dispositif.

Les chapitres suivants détaillent le paramétrage des différentes fonctionnalités du dispositif sous ETS.

3.1 CONFIGURATION PAR DÉFAUT

Cette partie présente la configuration du dispositif par défaut depuis laquelle on part à l'heure de paramétrer les options du dispositif.

∎≵∣o	Envoi On/Off	Allumer/Eteindre le Split	1 bit	C ·	- \	Ν -	U	switch	Bas
∎ ‡ 1	Envoi Température	Température envoyée au split	2 bytes	C ·	- \	Ν -	U	temperature (°C)	Bas
∎ ‡ 2	Envoi Mode	0=Aut,1=Cha,3=Fro,9=Ven,14=Sec	1 byte	C ·	- \	Ν -	U		Bas
■ ‡ 3	Envoi Ventilation [1byte]	0%Aut,1- 20%Min,21- 60%Moy,>	1 byte	C ·	- \	ΝT	U	percentage (0100%)	Bas
∎≹ 4	Envoi Lamelles	0=Arrêtées;1=En Mouvement	1 bit	C ·	- \	Ν -	U	switch	Bas
■2 5	On/Off (Etat)	Etat de la machine (ON/OFF)	1 bit	CI	R-	т	-	switch	Bas
■\$ 6	Température (Etat)	Valeur reçue du split	2 bytes	CI	R-	т	-	temperature (°C)	Bas
∎≵ 7	Mode (Etat)	Mode Actuel:0=Auto,1=Chau	1 byte	CI	R -	Т	-		Bas
∎‡8	Ventilation (Etat)	0%Aut,20%Min,60%Moy,100%Max	1 byte	CI	R -	т	-	percentage (0100%)	Bas
∎‡ 9	Lamelles (Etat)	Etat Lamelle:0=Arrêtées,1=Mouv	1 bit	CI	R-	т	-	switch	Bas

Figure 3. Topologie par défaut du KLIC-DD

Dans la fenêtre de topologie par défaut (Figure 3) apparaissent les objets de communication associés à la réception des ordres pour le contrôle basic de l'unité d'A/C: On/Off, Température, Mode, Ventilation et Lamelles.

La première fois que l'édition de paramètres du KLIC-DD est ouvert, il se montrera un écran qui s'observe dans la Figure 4, laquelle contient trois onglets principaux:

GENERAL	Modèle du dispositif	O Conventionnel
MODE		 Unité Intérieure pour Humidifier Deshumidifier
	Scènes	🔘 Non 🗌 Oui
VENTILATION	Limitation de Température	Non Oui
	Extinction Automatique	🔘 Non 🔵 Oui
	Gestion des erreurs	🔘 Non 🗌 Oui
	Configuration Initiale	O Par défaut O Personnalisée
	Gestion Avancée du Climat	🔘 Non 🗌 Oui
	Fonctions Logiques	🔘 Non 🔵 Oui

Figure 4. Écran de configuration par défaut

- Général: permet d'activer individuellement le contrôle des fonctionnalités avancées de l'unité d'A/C.
- Mode: permet de configurer les aspects relationnés avec le mode de fonctionnement de l'unité d'A/C.
- Ventilation: permet de configurer les aspects relationnés avec la vitesse de ventilation de l'unité d'A/C.

3.2 ÉCRAN GÉNÉRAL

Depuis la page de configuration "Général", il est possible d'activer les différentes fonctionnalités avancées (Scènes, Limitation de Température, Extinction Automatique, Gestion des erreurs, Configuration Initiale, Gestion Avancées du climat et Fonctions logiques), ainsi que le modèle du climatiseur à contrôler (Conventionnel ou Unité intérieure pour Humidifier Déshumidifier). Toutes ces fonctionnalités avancées sont expliquées en détail dans les chapitres suivants.

3.2.1 MODÈLE DU DISPOSITIF

Cette option permet de sélectionner le modèle d'air conditionné à contrôler, pouvant choisir entre: modèle **conventionnel** ou **Unité Intérieure pour Humidifier Déshumidifier**.

Le modèle conventionnel englobe toutes les machines de A/C de gamme résidentielle compatible avec l'interface KLIC-DD.

Si se choisie la deuxième option, apparaîtront une série d'objets de communication additionnels associés à la fonctionnalité spécifique de ce modèle de A/C. De plus, tout au long de la configuration, apparaîtront un ensemble options associées à ce modèle (indiqués dans ETS comme *Unités de Humidifier Déshumidifier).

3.2.2 SCÈNES

Lors de l'activation de cette fonctionnalité, apparaît dans le menu de gauche l'option Scènes, d'où il sera possible d'activer et configurer chacune des 4 scènes disponibles, montré dans la Figure 5. La scène à exécuter sera reçu du BUS KNX sur l'objet de communication activé à cet effet: "Scènes".

GENERAL	Scène 1	Ovi Oui
MODE	Scène 2	🔘 Non 🔵 Oui
VENTILATION	Scène 3	🔘 Non 🔵 Oui
SCENES	Scène 4	🔘 Non 🔵 Oui
	* Cette option est disponible uniquement pour unités Humidificatrice Deshumidi.	

Figure 5. Écran de configuration des scènes

Concrètement, les paramètres qui pourront être configurés pour chacune des scènes activées sont les suivantes:

- Numéro de scène: Indique le numéro de la scène (entre 1 et 64) à réception de laquelle seront envoyés à l'unité intérieure les ordres correspondants.
- ON/OFF. Possibilité de choisir l'état de l'unité d'A/C: Sans variation, allumé ou éteint.
- Température. Sans variation ou envoi d'une nouvelle valeur de température (entre 18 et 30°C).
- Mode. Sans variation, automatique, chaud, sec, ventilation, froid ou humidification (Uniquement pour les modèles Humidifier/Déshumidifier).
- Ventilation. Sans variation, automatique, minimum, moyen ou maximum
- Lamelles. Sans variation, les deux arrêtées, normales en mouvement. Et les options pour les unités d'humidification/déshumidification. Extra en Mouvement ou les deux en mouvement.

Dans la Figure 6 se montre un exemple de configuration de scène.

GENERAL	Scène 1	Non Oui	
MODE	Numéro de la Scène	1	
	ON/OFF	Sans Variation	
VENTILATION	Température	Sans Variation 🔘 Nouvelle Température	
SCENES	Nouvelle Température	25	
	Mode	Chaud	
	Ventilation	Moyenne	
	Lamelles	Les deux arrêtées	
	Scène 2	🔘 Non 🔵 Oui	
	Scène 3	🔘 Non 🔵 Oui	
	Scène 4	Oui Oui	
	* Cette option est disponible uniquement pour unités Humidificatrice Deshumidi.		

Figure 6. Exemple de configuration des scènes (Scène 1)

3.2.3 LIMITATION DE TEMPÉRATURES

L'unité de climatisation à des limites de température de consigne supérieure et inférieure ne pouvant pas être dépassées. De son côté, le KLIC-DD offre la possibilité d'établir de nouvelles limites de température de consigne à condition qu'elles se trouvent dans l'intervalle original de l'unité d'A/C concerné.

Les limites de température sont personnalisables pour les trois modes de fonctionnement qui ont besoin de l'emploi de la température, qui sont: Automatique, Froid et Chaud.

	GENERAL	MODE AUTO		
	MODE	Minimum	21	* *
ł		Maximum	27	÷
l	VENTILATION	MODE FROID		
l	LIMITATION DE TEMPERATURE	Minimum	23	*
		Maximum	28	*
l		MODE CHAUD		
l		Minimum	19	+
		Maximum	26	* *

Pour que ces nouvelles limites de température soient prises en compte, il sera nécessaire d'habiliter clairement la limitation de température, au moyen de l'envoi de la valeur "1" au travers de l'objet de communication spécifique "Limitation de température". *Pour recommencer à contrôler la machine en utilisant ses limites de température prédéterminés, il faudra envoyer la valeur "0" sur ce même objet.*

Une fois les nouvelles limites de température définies pour chaque mode et la fonction activée, quand il est reçu depuis le BUS KNX une valeur de température de consigne hors du nouvel intervalle, la valeur qui sera réellement envoyée à la machine sera égale à la limite de température correspondante.et sera notifiée au moyen de l'objet "Envoi de la température".

<u>Note</u>: Lorsque la limitation de température est activée sous ETS, elle est automatiquement activée par défaut et ce seront les limites personnalisées qui dirigeront le comportement de la machine lorsqu'elle sera allumée.

3.2.4 EXTINCTION AUTOMATIQUE

Cette fonction permet d'éteindre l'unité intérieure temporairement si se produit un changement d'état (de valeur "0" à la valeur "1") dans l'objet de communication de 1 bit correspondant ("**Extinction Automatique**".

GENERAL	Retard pour l'Extinction Automatique [x sec]	20	
MODE	Activer Flexibilité?	🔘 Non 🔵 Oui	
VENTILATION			
EXTINCTION AUTOMATIQUE			

Il sera possible de configurer les options suivantes:

- Délai pour auto-OFF: permet de choisir le temps, en secondes, après lequel le KLIC-DD effectuera l'extinction automatique de l'unité intérieure d'air conditionné.
- Activer flexibilité?: Si cette option est activée ("Oui"), il sera possible de contrôler le climatiseur même s'il est éteint (après une extinction automatique: "Extinction Automatique"=1). Si la flexibilité est déshabilité ("Non"), la machine ne pourra pas se contrôler après une extinction automatique, jusqu'à ce que l'objet "Extinction automatique" vaut à nouveau "0".

3.2.5 GESTION D'ERREURS

Dans la fenêtre de gestion des erreurs on peut activer l'envoi au bus KNX des messages indiquant l'apparition des erreurs.

GENERAL	Erreurs Internes	🔘 Non 🔵 Oui
MODE	Erreurs Externes	🔘 Non 🔵 Oui
VENTILATION		
GESTION DES ERREURS		
Figure 0	Page de configuration destion des erreurs	

Figure 9. Page de configuration gestion des erreurs

On peut activer la détection des erreurs internes de la communication entre le KLIC-DD et l'unité de A/C, externes propres de l'unité de A/C ou les deux.

- Erreurs Internes: lors de l'activation de cette option, deux nouveaux objets de communication apparaissent: "Erreur Interne", de 1 bit et "Type d'erreur interne", de 1 byte. Le premier indique qu'une erreur interne s'est produite (valeur "1": erreur, valeur "0": pas d'erreur). Le second indique le code identificateur de l'erreur produite (valeur numérique entre 1 et 4. Voir le Tableau 1. Types d'erreurs Internes).
- Erreurs externes: lors de l'activation de cette option, deux nouveaux objets de communication apparaissent: "Erreur Externe" et "Type d'Erreur Externe". Le premier indique qu'une erreur interne s'est produite (valeur "1": erreur, valeur "0": pas d'erreur). Le second indique le code identificateur de l'erreur produite (consulter manuel spécifique du climatiseur installé.

3.2.6 CONFIGURATION INITIALE

Cette fonctionnalité permet de configurer les états initiaux du climatiseur après son installation ou la récupération suite à une coupure d'alimentation électrique. Cette configuration peut être par défaut ou personnalisée. Si la configuration personnalisée est choisie, la page d'écran montrée sur la Figure 10, s'affiche.

GENERAL	ON/OFF	Dernier Etat 🔹
MODE	Température	O Dernier Etat O Personnalisée
VENTILATION	Mode	Dernier Etat 🔹
	Ventilation	Dernier Etat 🔹
CONFIGURATION INITIAL		
	Lamelles	Dernier Etat 🔹
	Envoyer configuration Initiale au BUS?	🔘 Non 🔵 Oui
	Envoyer Configuration Initiale au SPLIT?	Non Oui
	* Cette option est disponible uniquement pour unités Humidificatrice Deshumidi.	

Les variables dont l'état initiale peut se configurer sont:

- ON/OFF: <u>Dernier</u> (état que la machine avait avant la coupure d'alimentation; après une programmation, le dernier état sera éteint), Allumer (ON) ou Éteindre (OFF) la machine.
- Température: <u>Dernière valeur</u> ou celle <u>personnalisée</u> (apparaît un nouveau champ pour définir la nouvelle température initiale).
- Mode: <u>Dernier État</u>, <u>automatique</u>, <u>chaud</u>, <u>sec</u>, <u>ventilation</u>, <u>froid</u> ou <u>humidification</u> (Uniquement pour les modèles Humidifier/Déshumidifier).
- Ventilation: <u>Dernier état</u>, <u>minimum</u>, <u>moyenne</u>, <u>maximum</u> ou <u>automatique</u>.
- Lamelles: <u>Dernier État</u>, <u>les deux arrêtées</u>, <u>normales en mouvement</u>. Et les options pour les unités d'humidification/déshumidification. <u>Extra en Mouvement</u> ou <u>les deux en mouvement</u>.

Il est également possible de configurer l'envoi des états au BUS KNX et au climatiseur et le moment de cet envoi grâce à ces deux paramètres:

Envoyer configuration Initiale au BUS?: Si cette option est activée (option "<u>Oui</u>"), un nouveau champ apparaît: "Retard". Ici, ou configurer, en secondes, le temps que le KLIC-DD attendra avant d'envoyer sur le BUS KNX les états configurés. Envoyer configuration Initiale au SPLIT?: Si cette option est activée (option "<u>Oui</u>"), un nouveau champ apparaît: "Retard", ou configurer, en secondes, le temps que le KLIC-DD attendra avant d'envoyer les états configurés à l'unité d'air conditionné-.

Note: Il est recommandé établir un retard pour l'envoi de la configuration initiale au Split d'au moins 1 minutes. Ceci dans le but de laisser le temps au Split de s'initialiser complètement après la chute de tension. Il est aussi recommandable que le retard dans l'envoi de la configuration au Split soit majeur que le retard pour l'envoi des états initiaux au Bus. Si ce n'est pas comme ça, les états s'enverront deux fois au bus KNX un avec l'envoi des états initiaux au Bus et l'autre comme réponse de l'unité d'air conditionné avec l'envoi des états initiaux à la propre machine.

3.2.7 GESTION AVANCÉE DE LA CLIMATISATION.

Cette fonctionnalité permet de modifier la température de consigne envoyée au climatiseur en fonction de la température réelle de la pièce à climatiser, mesuré par un capteur KNX externe.

GENERAL	Période d'Analyse [x5 min]	12	* *
MODE			
VENTILATION			
GAC			

Figure 11. Gestion avancée de la climatisation.

La vérification de la température réelle de la pièce se réalise en plusieurs périodes de temps. Cela est ce qui se configure dans la fenêtre GAC (Gestion Avancée de Climat), dans le champ **Période d'analyses**, ou devra s'établir la période de visualisation, en minutes, en fonction des conditions particulières de l'installation dans laquelle se trouve l'unité de A/C. Peuvent se configurer des périodes entre 15 et 240 minutes (de prendre en compte que la valeur à introduire dans la case de période d'analyses se multiplie internement par 5 ce qui fait que les valeurs permises se trouvent dans l'échelle [3-48]).

habiliter cette fonction, apparaissent deux nouveaux objets de communication de 2 bytes chacun: "Température Ambiante" et "Température Modifiée". Sur le premier d'entre eux sera reçu la valeur de la température réelle de la pièce (valeur qui sera envoyé périodiquement par une sonde externe KNX). Le second objet indique la température de consigne envoyée au climatiseur, cette consigne est modifiée par rapport à l'originale comme indiqué à continuation.

Le fonctionnement est le suivant :

- Si la température ambiante ne reste pas stable (plus de 1°C de variation) pendant la période de visualisation, KLIC-DD continu à visualiser.
- Si la température ambiante se maintient stable (comme maximum 1°C de variation) pendant la période de visualisation, KLIC-DD considère que cette température que va à atteindre l'unité intérieure avec la consigne actuelle. Dans ce cas, se compare cette température avec celle de consigne et, si il existe une différence supérieure à 1°C, s'ajuste la température de consigne en calculant une nouvelle consigne modifiée. La nouvelle consigne s'envoie au travers de l'objet "Température Modifiée". Le calcul de la température modifiée se réalise au moyen de l'application de la formule suivante:
 - Après un téléchargement ou un changement de la consigne (premier calcul):

 $T_{mode} = T + (T - T_{ambiante})$

> Passé le premier calcul, pour arriver un ajustement plus précis:

$$T_{mode} = \frac{T + T_{mode \ précédent}}{2} + \left(\frac{T + T_{mode \ précédent}}{2} - T_{ambiante}\right)$$

Étant: " T_{mode} ", la température modifiée; "T", la consigne établie par l'utilisateur; " $T_{ambiante}$ ", la température ambiante envoyée par un capteur externe et " $T_{mode \ précédent}$ ", la dernière température modifiée calculée.

Note: La température ambiante s'emploie pour le calcul de la température modifiée, pour ce qui est nécessaire de recevoir cette valeur de forme périodique pour un fonctionnement correct de la gestion avancée de climat.

Exemples:

Consigne supérieure de la température ambiante: si la température ambiante de la chambre reste constante à 22°C pendant une période de visualisation alors que la consigne est de 25°C, s'enverra à la machine une "consigne modifiée" de:

 $25 + (25 - 22) = ^{\circ}C.$

si pendant la période suivante de visualisation la température ambiante continu sans atteindre la consigne de l'utilisateur et reste constante à 23°C, s'enverra à la machine

une "consigne modifiée" de: $\frac{25+28}{2} + \left(\frac{25+28}{2} - 23\right) = 2$ {°C

Se calculera successivement une "consigne modifiée" jusqu'à ce que s'atteint une température ambiante qui ne diffère pas plus de 1°C avec la consigne qu'a établit l'utilisateur.

Consigne inférieure de la température ambiante: si la température ambiante de la chambre reste constante à 26°C pendant une période de visualisation alors que la consigne est de 24°C, s'enverra à la machine une "consigne modifiée" de:

 $24 + (24 - 26) = ^{\circ}C.$

Il se recalculera la "température modifiée" jusqu'à ce que la consigne ambiante ne diffère pas plus d'un degré avec la température de consigne établie par l'utilisateur.

Il est recommandé de <u>ne pas montrer l'objet "température Modifiée</u>" <u>comme</u> <u>indicateur</u> vue que cette gestion avancée de climat doit être transparente au niveau de l'utilisateur. Pour ce motif, l'objet d'état de la température de consigne "Réception température" indiquera toujours la température envoyée à travers de l'objet " Envoi température".

3.2.8 FONCTIONS LOGIQUES

Ce module permet de réaliser des opérations arithmétiques ou en logique binaire avec des données provenant du bus KNX et d'envoyer le résultat au travers d'objets de communication spécifiquement conçus à tel effet dans l'actionneur.

Le dispositif dispose de jusqu'à 5 fonctions logiques différentes et indépendantes entre elles, complètement personnalisables, qui consistent en un maximum de 4 opérations consécutives chacune.

L'exécution de chaque fonction peut dépendre d'une **condition** configurable, qui sera évaluée chaque fois que s'**active** la fonction à travers d'objets de communication spécifiques et configurables. Le résultat, après exécution des opérations de la fonction, peut être aussi évalué suivant certaines **conditions** et être ensuite envoyé (ou non) sur le bus KNX, ce qui pourra être fait à chaque fois que la fonction est exécutée, périodiquement, ou uniquement si le résultat est différent de celui de la dernière exécution de la fonction.

Veuillez consulter le document spécifique "**Fonctions Logiques**" (disponible dans la page du dispositif sur le site web de Zennio: <u>www.zennio.fr</u>) pour obtenir une information détaillée sur l'utilisation des fonctions logiques et leur paramétrage en ETS.

3.3 ÉCRAN MODE

Comme il l'a été vu dans le chapitre 3.1. Configuration par défaut, l'écran spécifique du Mode permet de configurer les aspects relationnés avec le mode de fonctionnement de l'unité d'A/C.

GENERAL	Modes Individuels (Un objet pour chaque mode)	🔘 Non 🔵 Oui
MODE	Mode Simplifié (Seulement Froid/Chaud)	🔘 Non 🔵 Oui
VENTILATION	(Sediement Hold, enable)	

Modes individuels: A choisir cette option, se montreront 10 nouveaux objets de communication de 1 bit chacun, étant 5 d'entre eux associés au contrôle de l'envoi de chacun des modes disponibles (Automatique, Froid, Ventilation, Chaud et Sec) et les 5 autres pour la réception de l'état de chaque mode depuis le climatiseur. Les objets associés avec l'envoi sont les suivants: "Envoi Mode Auto", "Envoi Mode Froid", "Envoi Mode Chaud", "Envoi Mode Ventilation" et "Envoi Mode Sec".

Les objets associés avec la réception sont: "Réception Mode Auto", "Réception Mode Froid", "Réception Mode Chaud", "Réception Mode Ventilation" et "Réception Mode Sec".

De plus, pourront s'utiliser les objets "Envoi Mode" et "Réception Mode", de 1 byte, disponible par défaut.

Si l'option Modes individuels s'active, en plus de pouvoir modifier le mode d'opération de la machine (en écrivant la valeur "1" au travers de l'objet d'envoi associé au mode désiré de manière individuelle), il se notifiera aussi au bus KNX le mode actuel de l'unité de A/C, au travers de l'objet de mode "Réception Mode" et avec l'objet de réception de 1 bit correspondant au mode actuel.

• Mode Simplifié: en activant cette option, l'objet de communication de 1 bit "Mode Simplifié" apparaît et permettra d'établir le modes désirée: mode Froid, en écrivant la valeur "0" sur l'objet, ou mode Chaud en écrivant la valeur "1"). Pour cet objet de contrôle il n'existe pas d'objet d'état associé.

3.4 ÉCRAN VENTILATION

Depuis cet onglet, les paramètres concernant la vitesse de ventilation de l'unité d'A/C pourront être configurés.

GENERAL	Nombre de Vitesse	O 3 O 5
MODE	Contrôle par Pas	🔘 Non 🔵 Oui
VENTILATION		

Nombre de niveaux: cette option permet de configurer le nombre de niveaux de vitesse de ventilation que possède l'unité de A/C Ceux-ci pourront être de 3 ou 5 niveaux. La vitesse de ventilation est associée à deux objets de communication de 1 byte chacun: "Envoi Ventilation [1 byte]" et "Réception Ventilation", pour contrôler et indiquer la vitesse de ventilation, si elle est demandée. L'objet de contrôle ("Envoi Ventilation") envoie la valeur de ventilation en pourcentage. Cette valeur est interpolée, de manière quelle correspond avec le nombre de niveaux sélectionnés, comme nous le verrons à continuation. L'objet d'état ("Réception Ventilation") montrera la vitesse de ventilation actuelle, selon les pourcentages déjà interpolés.

Pourcentage de vitesse initiale	Pourcentage de vitesse interpolée	Niveau
0%	0%	Automatique
1-20%	20%	Minimum
21-60%	60%	Moyenne
61-100%	100 %	Maximum

3 niveaux: Trois niveaux: les pourcentages de vitesse de ventilation sont interprétés comme indiqué dans le Tableau 2.

Tableau 2. Pourcentages de vitesse de ventilation pour trois niveaux

5 niveaux: Trois niveaux: les pourcentages de vitesse de ventilation sont interprétés comme indiqué dans le Tableau 3.

Pourcentage de vitesse initiale	Pourcentage de vitesse interpolée	Niveau
0%	0%	Automatique
1-20%	20%	Minimum
21-40%	40%	Minimum- Moyen
41-60%	60%	Moyenne
61-80%	80%	Moyen- Maximum
81-100%	100 %	Maximum

 Tableau 3. Pourcentages de vitesse de ventilation pour cinq niveaux

Contrôle par pas: En activant cette option (option "Oui"), l'objet de communication de 1 bit "Ventilation [1 bit]" apparaît, qui permettra d'augmenter (envoi de la valeur "1") ou de diminuer (valeur "0") la vitesse de ventilation d'un niveau (par exemple, pour 3 niveaux, en étant sur le niveau minimum de ventilation, si la valeur "1" est envoyée sur l'objet "Ventilation [1 bit]", le niveau de ventilation passera au niveau intermédiaire).

Le contrôle par pas est **non cyclique**. Ceci signifie que, en étant sur un niveau Automatique (0%), s'il est diminué la vitesse, la machine continuera sur le mode Automatique jusqu'à ce que le niveau de vitesse soit augmenté. De la même manière, quand la vitesse se trouve au niveau maximum (100%), le niveau continuera à ce niveau jusqu'à ce que la vitesse soit diminuée.

ANNEXE I. OBJETS DE COMMUNICATION

Intervalle fonctionnel" montre les valeurs qui, indépendamment de celles permises par la taille de l'objet, ont une utilité ou une signification particulière de par une définition ou une restriction du standard KNX ou du programme d'application.

Numéro	Taille	E/S	Drapeaux	Type de donnée (DPT)	Échelle fonctionnelle	Nom	Fonction					
0	1 bit	Ι	C W U	DPT_Switch	0/1	Envoi On/Off	Allumer/Éteindre le Split					
1	2 bytes	Ι	C W U	DPT_Value_Temp	16°C – 32°C (ou selon param.)	Envoi Température	Température envoyée à la machine					
2	1 byte	I	C W U	DPT_HVACContrMode	0 = Auto $1 = Chaud$ $3 = Froid$ $9 = Vent$ $14 = Sec$	Envoi Mode	0=Auto,1=Ch,3=Fro,9=Ven,14=Sec					
2	1 byte	Ι	C W U	DPT_Scaling	0% - 100 %	Envoi Ventilation [1byte]	0=Auto,1=Ch,3=Fro,9=Ven,14=Sec (3 niveaux)					
3	1 byte	Ι	C T - W U	DPT_Scaling	0% - 100 %	Envoi Ventilation [1byte]	0%Au,1-20%Min,21-40%Min/Moy, (5 niveaux)					
4	1 bit	Ι	C W U	DPT_Switch	0/1	Envoi Lamelles	0%Aut,1-20%Min,21-60%Moy,>60Ma					
5	1 bit	0	C T R	DPT_Switch	0/1	Réception On/Off	0=Arrêtées; 1=En mouvement					
6	2 bytes	0	C T R	DPT_Value_Temp	16°C — 32°C (ou selon param.)	Réception Température	État du dispositif (ON/OFF)					
7	1 byte	ο	C T R	DPT_HVACContrMode	0 = Auto 1 = Chaud 3 = Froid 9 = Vent 14 = Sec	Réception Mode	Valeur reçue du split					
0	1 byte	0	C T R	DPT_Scaling	0% - 100 %	Réception Ventilation	Mode Actuel:0=Auto,1=Chau (5 niveaux)					
0	1 byte	0	C T R	DPT_Scaling	0% - 100 %	Réception Ventilation	0%Aut,20%Min,60%Moy,100%Max (3 niveaux)					
9	1 bit	0	C T R	DPT_Switch	0/1	Réception Lamelles	État lamelles:0=Arrêtées,1=Mouvem					
10	1 bit	Ι	C T - W U	DPT_Switch	0/1	Envoi Mode Auto	1=Activer Mode Auto;0=Rien					
11	1 bit	Ι	C T - W U	DPT_Switch	0/1	Envoi Mode Froid	1=Activer Mode Froid;0=Rien					
12	1 bit	Ι	C T - W U	DPT_Switch	0/1	Envoi Mode Chaud.	1=Activer Mode Chaud;0=Rien					
13	1 bit	Ι	C T - W U	DPT_Switch	0/1	Envoi Mode Ventilation	1=Activer Mode Ventilation;0=Rien					
14	1 bit	Ι	C T - W U	DPT_Switch	0/1	Envoi Mode Sec	1=Activer Mode Sec; 0=Rien					

•*Zennio

15	1 bit	Ι	C W U	DPT_Heat_Cool	0/1	Mode Simplifié	0 = Froid; $1 =$ Chaud
16	1 bit	0	C T R	DPT_Switch	0/1	Réception Mode Auto	1=Mode Auto Activé;0=Désactivé
17	1 bit	0	C T R	DPT_Switch	0/1	Réception Mode Froid	1=Mode Froid Activé;0=Désactivé
18	1 bit	0	C T R	DPT_Switch	0/1	Réception Mode Chaud.	1=Mode Chaud Activé;0=Désactivé
19	1 bit	0	C T R	DPT_Switch	0/1	Réception Mode Ventilation	1=Mode Chaud Activé;0=Désactivé
20	1 bit	0	C T R	DPT_Switch	0/1	Réception Mode Sec	1=Mode Sec Activé;0=Désactivé
21	1 bit	Ι	C W U	DPT_Step	0/1	Envoi Ventilation [1bit]	0=Diminuer;1=Augmenter
22	1 byte	Ι	C W U	DPT_SceneControl	0-63; 128-191	Scènes	Valeur de la scène choisie
23	1 bit	I/O	CTRWU	DPT_Switch	0/1	Limitation de température	0=Désactiver;1=Activer
24	1 bit	Ι	C W U	DPT_Switch	0/1	Extinction Automatique	0=Désactiver;1=Activer
25	1 bit	0	C T R	DPT_Switch	0/1	Erreur Interne	0=Pas d'erreur, 1=Erreur
26	1 byte	0	C T R	-	1 -4	Type d'erreur interne	1=Réc.Erreur,2=Temps Écoulé
27	1 bit	0	C T R	DPT_Switch	0/1	Erreur Externe	0=Pas d'erreur, 1=Erreur
28	1 byte	0	C T R	-	0 -255	Type d'Erreur Externe	Voir tableau des erreurs.
29	1 bit	Ι	C W U	DPT_Switch	0/1	Envoi Mode Humidification	1=Activer mode,0=Ignorer
30	1 bit	0	C T R	DPT_Bool	0/1	Réception Mode Humidification	0=Désactivé,1Activé
31	1 byte	0	C T R	DPT_Scaling	0% - 100 %	Réception Niveau d'Humidification	0=Off,25=Bas,50=Moy,75=Haut
32	1 bit	Ι	C W U	DPT_Switch	0/1	Envoi niveau Humidification par pas	0=Diminuer,1=Augmenter
33	1 bit	Ι	C W U	DPT_Switch	0/1	Réception Lamelles Extra	0=Arrêter,1=Bouger
34	1 bit	0	C T R	DPT_Switch	0/1	Réception Lamelles Extra	0=Arrêter,1=En mouvement
35	2 bytes	Ι	C W U	DPT_Value_Temp	16ºC — 32ºC	Température Ambiante	Température depuis KNX
36	2 bytes	0	C T R	DPT_Value_Temp	16ºC — 32ºC	Température modifiée	Temp.Réelle Envoyée à la machine
37	1 bit	Ι	C W -	DPT_Bool	0/1	[FL] Donnée (1bit) 1	Donnée d'entrée binaire (0/1)
38	1 bit	Ι	C W -	DPT_Bool	0/1	[FL] Donnée (1bit) 2	Donnée d'entrée binaire (0/1)
39	1 bit	Ι	C W -	DPT_Bool	0/1	[FL] Donnée (1bit) 3	Donnée d'entrée binaire (0/1)
40	1 bit	Ι	C W -	DPT_Bool	0/1	[FL] Donnée (1bit) 4	Donnée d'entrée binaire (0/1)
41	1 bit	Ι	C W -	DPT_Bool	0/1	[FL] Donnée (1bit) 5	Donnée d'entrée binaire (0/1)
42	1 bit	Ι	C W -	DPT_Bool	0/1	[FL] Donnée (1bit) 6	Donnée d'entrée binaire (0/1)
43	1 bit	Ι	C W -	DPT_Bool	0/1	[FL] Donnée (1bit) 7	Donnée d'entrée binaire (0/1)
44	1 bit	Ι	C W -	DPT_Bool	0/1	[FL] Donnée (1bit) 8	Donnée d'entrée binaire (0/1)
45	1 bit	Ι	C W -	DPT_Bool	0/1	[FL] Donnée (1bit) 9	Donnée d'entrée binaire (0/1)
46	1 bit	Ι	C W -	DPT_Bool	0/1	[FL] Donnée (1bit) 10	Donnée d'entrée binaire (0/1)
47	1 bit	Ι	C W -	DPT_Bool	0/1	[FL] Donnée (1bit) 11	Donnée d'entrée binaire (0/1)
48	1 bit	Ι	C W -	DPT_Bool	0/1	[FL] Donnée (1bit) 12	Donnée d'entrée binaire (0/1)
49	1 bit	Ι	C W -	DPT_Bool	0/1	[FL] Donnée (1bit) 13	Donnée d'entrée binaire (0/1)
50	1 bit	Ι	C W -	DPT_Bool	0/1	[FL] Donnée (1bit) 14	Donnée d'entrée binaire (0/1)
51	1 bit	Ι	C W -	DPT_Bool	0/1	[FL] Donnée (1bit) 15	Donnée d'entrée binaire (0/1)
52	1 bit	Ι	C W -	DPT_Bool	0/1	[FL] Donnée (1bit) 16	Donnée d'entrée binaire (0/1)
53	1 byte	Ι	C W -	DPT_Value_1_Ucount	0 - 255	[FL] Donnée (1byte) 1	Donnée d'entrée 1 byte (0-255)

0			
. 10	n	n	5
			v

54	1 byte	Ι	C W -	DPT_Value_1_Ucount	0 - 255	[FL] Donnée (1byte) 2	Donnée d'entrée 1 byte (0-255)
55	1 byte	Ι	C W -	DPT_Value_1_Ucount	0 - 255	[FL] Donnée (1byte) 3	Donnée d'entrée 1 byte (0-255)
56	1 byte	Ι	C W -	DPT_Value_1_Ucount	0 - 255	[FL] Donnée (1byte) 4	Donnée d'entrée 1 byte (0-255)
57	1 byte	Ι	C W -	DPT_Value_1_Ucount	0 - 255	[FL] Donnée (1byte) 5	Donnée d'entrée 1 byte (0-255)
58	1 byte	Ι	C W -	DPT_Value_1_Ucount	0 - 255	[FL] Donnée (1byte) 6	Donnée d'entrée 1 byte (0-255)
59	1 byte	Ι	C W -	DPT_Value_1_Ucount	0 - 255	[FL] Donnée (1byte) 7	Donnée d'entrée 1 byte (0-255)
60	1 byte	Ι	C W -	DPT_Value_1_Ucount	0 - 255	[FL] Donnée (1byte) 8	Donnée d'entrée 1 byte (0-255)
61	2 bytes	Ι	C W -	DPT_Value_2_Count	0 - FFFF	[FL] Donnée (2bytes) 1	Donnée d'entrée de 2 bytes
62	2 bytes	Ι	C W -	DPT_Value_2_Count	0 - FFFF	[FL] Donnée (2bytes) 2	Donnée d'entrée de 2 bytes
63	2 bytes	Ι	C W -	DPT_Value_2_Count	0 - FFFF	[FL] Donnée (2bytes) 3	Donnée d'entrée de 2 bytes
64	2 bytes	Ι	C W -	DPT_Value_2_Count	0 - FFFF	[FL] Donnée (2bytes) 4	Donnée d'entrée de 2 bytes
65	2 bytes	Ι	C W -	DPT_Value_2_Count	0 - FFFF	[FL] Donnée (2bytes) 5	Donnée d'entrée de 2 bytes
66	2 bytes	Ι	C W -	DPT_Value_2_Count	0 - FFFF	[FL] Donnée (2bytes) 6	Donnée d'entrée de 2 bytes
67	2 bytes	Ι	C W -	DPT_Value_2_Count	0 - FFFF	[FL] Donnée (2bytes) 7	Donnée d'entrée de 2 bytes
68	2 bytes	Ι	C W -	DPT_Value_2_Count	0 - FFFF	[FL] Donnée (2bytes) 8	Donnée d'entrée de 2 bytes
69	1 bit	0	C T R	DPT_Bool	0/1	[FL] RESULTAT Fonction 1 (1bit)	Résultat de la FONCTION 1
70	1 bit	0	C T R	DPT_Bool	0/1	[FL] RESULTAT Fonction 2 (1bit)	Résultat de la FONCTION 2
71	1 bit	0	C T R	DPT_Bool	0/1	[FL] RESULTAT Fonction 3 (1bit)	Résultat de la FONCTION 3
72	1 bit	0	C T R	DPT_Bool	0/1	[FL] RESULTAT Fonction 4 (1bit)	Résultat de la FONCTION 4
73	1 bit	0	C T R	DPT_Bool	0/1	[FL] RESULTAT Fonction 5 (1bit)	Résultat de la FONCTION 5
74	1 byte	0	C T R	DPT_Value_1_Ucount	0 - 255	[FL] RESULTAT Fonction 1 (1byte)	Résultat de la FONCTION 1
75	1 byte	0	C T R	DPT_Value_1_Ucount	0 - 255	[FL] RESULTAT Fonction 2 (1byte)	Résultat de la FONCTION 2
76	1 byte	0	C T R	DPT_Value_1_Ucount	0 - 255	[FL] RESULTAT Fonction 3 (1byte)	Résultat de la FONCTION 3
77	1 byte	0	C T R	DPT_Value_1_Ucount	0 - 255	[FL] RESULTAT Fonction 4 (1byte)	Résultat de la FONCTION 4
78	1 byte	0	C T R	DPT_Value_1_Ucount	0 - 255	[FL] RESULTAT Fonction 5 (1byte)	Résultat de la FONCTION 5
79	2 bytes	0	C T R	DPT_Value_2_Count	0 - FFFF	[FL] RESULTAT Fonction 1 (2bytes)	Résultat de la FONCTION 1
80	2 bytes	0	C T R	DPT_Value_2_Count	0 - FFFF	[FL] RESULTAT Fonction 2 (2bytes)	Résultat de la FONCTION 2
81	2 bytes	0	C T R	DPT_Value_2_Count	0 - FFFF	[FL] RESULTAT Fonction 3 (2bytes)	Résultat de la FONCTION 3
82	2 bytes	0	C T R	DPT_Value_2_Count	0 - FFFF	[FL] RESULTAT Fonction 4 (2bytes)	Résultat de la FONCTION 4
83	2 bytes	0	C T R	DPT_Value_2_Count	0 - FFFF	[FL] RESULTAT Fonction 5 (2bytes)	Résultat de la FONCTION 5

ANNEXE II. CORRESPONDANCE AVEC LES CODES D'ERREUR DES MACHINES DE CLIMATISATION.

Tableau de correspondance entre le numéro de l'erreur envoyée (format décimal) sur le bus KNX par le KLIC-DI et le code d'erreur des appareils d'A/C.

Bus	Code	В	us	Code	Bus	Code	Bus	Code	•	Bus	Code	Bus	Code	Bus	Code	Bus	Code	Bus	Code		Bus	Code
1	1	2	6	AA	51	E3	76	HC		101	J5	126	LE	151	U7	176	30	201	49	2	226	62
2	2	2	7	AH	52	E4	77	HJ		102	J6	127	LF	152	U8	177	31	202	4 A		227	63
3	3	2	8	AC	53	E5	78	HE		103	J7	128	P0	153	U9	178	32	203	4H	2	228	64
4	4	2	9	AJ	54	E6	79	HF		104	J8	129	P1	154	UA	179	33	204	4C		229	65
5	5	3	0	AE	55	E7	80	F0		105	J9	130	P2	155	UH	180	34	205	4J	2	230	66
6	6	3	1	AF	56	E8	81	F1		106	JA	131	P3	156	UC	181	35	206	4E	2	231	67
7	7	3	2	C0	57	E9	82	F2		107	JH	132	P4	157	UJ	182	36	207	4F	2	232	68
8	8	3	3	C1	58	EA	83	F3		108	JC	133	P5	158	UE	183	37	208	50	2	233	69
9	9	3	4	C2	59	EH	84	F4		109	JJ	134	P6	159	UF	184	38	209	51	2	234	6A
10	0A	3	5	C3	60	EC	85	F5		110	JE	135	P7	160	MO	185	39	210	52	2	235	6H
11	0H	3	6	C4	61	EJ	86	F6		111	JF	136	P8	161	M1	186	ЗA	211	53	2	236	6C
12	0C	3	7	C5	62	EE	87	F7		112	LO	137	P9	162	M2	187	3H	212	54	2	237	6J
13	OJ	3	8	C6	63	EF	88	F8		113	L1	138	PA	163	M3	188	3C	213	55	2	238	6E
14	0E	3	9	C7	64	HO	89	F9		114	L2	139	PH	164	M4	189	3J	214	56	2	239	6F
15	0F	4	0	C8	65	H1	90	FA		115	L3	140	PC	165	M5	190	3E	215	57			
16	A0	4	1	C9	66	H2	91	FH		116	L4	141	PJ	166	M6	191	3F	216	58			
17	A1	4	2	CA	67	H3	92	FC		117	L5	142	PE	167	M7	192	40	217	59			
18	A2	4	3	СН	68	H4	93	FJ		118	L6	143	PF	168	M8	193	41	218	5A			
19	A3	4	4	CC	69	H5	94	FE		<mark>119</mark>	L7	144	U0	169	M9	194	42	219	5H			
20	A4	4	5	CJ	70	H6	95	FF		120	L8	145	U1	170	MA	195	43	220	5C			

21	A5	46	CE	71	H7		96	JO	121	L9	146	U2	171	MH	196	44	221	5J
22	A6	47	CF	72	H8		97	J1	122	LA	147	U3	172	MC	197	45	222	5E
23	A7	48	E0	73	H9		98	J2	123	LH	148	U4	173	MJ	198	46	223	5F
24	A8	49	E1	74	HA		99	J3	124	LC	149	U5	174	ME	199	47	224	60
25	A9	50	E2	75	HH	-	100	J4	125	LJ	150	U6	175	MF	200	48	225	61

Venez poser vos questions sur les dispositifs Zennio : http://support.zennio.com

Zennio Avance y Tecnología S.L.

C/ Río Jarama, 132. Nave P-8.11 45007 Toledo (Spain).

Tél. : +33 (0)1 76 54 09 27

www.zennio.fr info@zennio.fr

